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1. Introduction

Although the vibration characteristics of a rotating shaft has been investigated analytically,
numerically, and experimentally [1–10], there are still some fundamental issues that remain open
and need to be addressed. It is well known that modelling a rotating shaft based on Euler–Bernoulli
beam theory is inadequate for flexural vibration analysis while the shaft is short and stubby due to
neglecting the effects of rotary inertia and transverse shear deformation. Although Rayleigh beam
model includes the rotary inertia effect, it can predict only a limited number of critical speeds [6].
Furthermore, as the Rayleigh beam coefficient and the rotational speed increase, the predictions of
the natural frequency and the shaft deflection become unacceptable. The Timoshenko beam model
has been typically used as the most comprehensive model in the derivation of equations of motion
of a rotating shaft and many researchers have studied its characteristics in rotordynamics [6–10].
The equations of motion for a rotating shaft subject to moving loads based on Timoshenko theory
can be derived using either Newton’s method [7] or Hamilton’s principle [10]. Then, the shaft
deformation that is expressed in terms of either an inertial frame [7,10] or a co-ordinate system
fixed to the rotating shaft [8] can be determined by using the modal analysis or the integral
transformation method. However, this complicated model usually leads the natural frequency to be
determined numerically when the rotating shaft is subject to a moving load.

The note is concerned with the dynamic response of a high-speed rotating, short shaft subjected
to a high-speed moving load. Under this circumstance, the shear and rotary inertia effects must be
captured for an accurate dynamic analysis. The present work focused on the aspect of the
determination of the natural frequency analytically, so the Timoshenko beam model must be
simplified in the modelling. Therefore, a modified-Rayleigh beam model is proposed to improve
the prediction accuracy of the critical speed, the natural frequency and the shaft deformation of
Rayleigh beam model. Compared with the Rayleigh beam model, the proposed beam model
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simply includes the shear deformation that plays an important role for a short and stubby shaft in
flexural vibration. Compared with the Timoshenko beam model, we make simplifications by
neglecting the coupling effects induced from the shear deformation. However, several questions
need to be answered in this note: (1) What are the advantages of this proposed model in
calculating the vibration response and the natural frequency compared with the Timoshenko
beam model? (2) Compared with the Timoshenko beam model, what are the differences in
predicting the vibration response and the natural frequency? (3) What are the limitations of this
proposed model? Motivated by these three questions, this paper formulates a rotating shaft
through the Newton method, determines the natural frequencies and quantifies the differences in
vibration responses between the Timoshenko beam and the proposed model in order to find the
answers to the questions stated above.

2. Equation of motions for different beam models

Consider a moving load of amplitude P with a constant speed v acting on a uniform shaft of
length c lying in the x2z plane with both ends simply supported and rotating at a constant
angular velocity O as shown in Fig. 1. The shaft has cross-sectional area A; cross-sectional shape
factor k, Young’s modulus E; shear modulus G and density r: In the following the equation of
motion based on Timoshenko beam theory was derived using Newtonian approach. Details of
derivation of the equation of motion can be found in Ref. [6]
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where uðz; tÞ represents the transverse displacement of the rotating shaft and dðz2vtÞ is the Dirac
delta function. Note that the coupling between flexural and torsional vibration due to mass
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Fig. 1. Geometry of a spinning shaft subjected to a moving load.
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eccentricity is not considered and the complex displacement u ¼ ux þ juy is used for convenience
in derivation [7]. The terms on the left-hand side in Eq. (1) include the flexural stiffness, the
transverse shear and rotary inertia, the gyroscopic effect, the lateral inertia, the coupling between
transverse shear and the gyroscopic effects and the coupling between transverse shear and the
rotary inertia. In order to include the shear deformation which becomes significant when the
cross-sectional dimensions are not small compared to the length of the beam in flexural vibration,
a model based on Rayleigh beam theory, called the modified-Rayleigh beam model, is proposed.
Compared with the Timoshenko beam model, the difference is that the shear angle is included in
the modified-Rayleigh beam model in calculation of the bending moments and is reasonable only
when the shear angle is small enough compared to the slope caused by the bending. However, the
inclusion of the shear angle introduces the transverse shear, which proves to be important for a
short and stubby shaft. Moreover, this approximation not only can simplify the equation of
motion but also has the associate advantages described in the following sections. The equation of
motion of the proposed modified-Rayleigh beam model is expressed as follows:
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Obviously, compared with the Rayleigh beam model, the modified-Rayleigh beam model simply
takes into account the shear deformation effect. Nevertheless, compared with the Timoshenko
beam model, this simplified model does not include the coupling effects induced by the shear
deformation; such as the coupling between transverse shear and the gyroscopic effects and the
coupling between transverse shear and the rotary inertia.

As stated in the introduction, the purpose of this study is to determine the advantages of this
proposed model through determining the fundamental dynamic characteristics; such as the critical
speed, the natural frequency and the deflection while the rotating shaft is subjected to a high-speed
moving load. Moreover, we need to quantify the deviation in those characteristics between the
Timoshenko beam model and the proposed model.

3. The displacement response and the natural frequency for a rotating shaft subjected to a moving

load

The boundary and initial conditions for the system are expressed as uð0; tÞ ¼ 0; uðc; tÞ ¼ 0;
@2u=@z2ð0; tÞ ¼ 0; @2u=@z2ðc; tÞ ¼ 0; uðz; 0Þ ¼ 0; @u=@tðz; 0Þ ¼ 0; @u=@zðz; 0Þ ¼ 0 and @2u=@t
@zðz; 0Þ ¼ 0: After applying the boundary and initial conditions, one can obtain the displacement
responses in the x and y directions from the equations of motion of the respective beam models
using the finite Fourier sine transformation and Laplace transform [7]. The displacement
responses for the respective beam models are given as follows:

(a) Modified-Rayleigh beam model:

uLðz; tÞ ¼ ð2=cÞ
XN
n¼1

dLP$n

aL

ðAL1ejoLn1t þ AL2ejoLn2t þ AL3ej$nt þ AL4e�j$ntÞsinðnpz=cÞ: ð3Þ
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Here, AL1BAL4 are listed in Appendix A dL ¼ 1 þ EI=kAG np=c
� �2

; $n ¼ npv=c is the frequency
caused by the moving load and the natural frequencies are
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where aL ¼ rA þ ðrEI=kG þ rIÞðnp=cÞ2; bL ¼ rIðnp=cÞ2 and cL ¼ EIðnp=cÞ4: Two natural
frequencies, oLn1 and oLn2 correspond to the forward and the backward frequencies of
the shaft, respectively. Both frequencies have an explicit form and can be determined
analytically.

(b) Timoshenko beam model:

uT ðz; tÞ ¼ ð2=cÞ
XN
n¼1

P$n

rA
ðAT1ejoTn1t þ AT2ejoTn2t þ AT3ejoTn3t þ AT4ejoTn4t

þ AT5ej$nt þ AT6e�j$ntÞsinðnpz=cÞ; ð5Þ

where AT1BAT4 are listed in the appendix. There are four natural frequencies, oTn1BoTn4

corresponding to two forward and two backward frequencies, respectively. However, those
frequencies have no explicit form and must be determined numerically.

(c) Rayleigh beam model:
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Here, AR1BAR4 are listed in appendix, dR ¼ 1 and the natural frequencies are
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where aR ¼ rA þ rIðnp=cÞ2; bR ¼ rIðnp=cÞ2 and cR ¼ EIðnp=cÞ4: There are two natural
frequencies with explicit forms. Comparing Eq. (3) with Eqs. (6) and (4) with Eq. (7), one can
notice that the shaft deflection and the natural frequencies are different between the modified-
Rayleigh and the Rayleigh beam models due to different values of the coefficients denoted by aR;
aL; dR and dL: However both natural frequencies can be expressed in close forms.

The dimensionless moving load speed, shaft deflection, rotational speed and Rayleigh beam
coefficient are defined as

Z ¼ z=c; a ¼ v=vcr; %u ¼ u=us; l ¼ O=o1EB; b ¼
pr0

c
; ð8Þ

where Z is the non-dimensional position along the rotating shaft, vcr ¼ p=c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
is the

fundamental critical speed of a pinned–pinned, non-rotating Euler–Bernoulli beam, b is the
Rayleigh beam coefficient, r0 is the radius of gyration, o1EB and us ¼ Pc3=48 EI are the first
natural frequency and the static deflection at midspan of a pinned–pinned Euler–Bernoulli beam.
With the rotational speed l ranging from 0 to 10, the first and the second forward natural
frequencies of a simply supported beam with parameters, k ¼ 0:9; E ¼ 207 GPa, G ¼ 77:6 GPa
are plotted in Fig. 2 for b ¼ 0:15 and Fig. 3 for b ¼ 0:35; respectively. Note that the frequency
with a smaller value is selected from the two forward frequencies of the Timoshenko beam model
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because the response is dominated by the lower frequency while the excitation is a moving load
with constant amplitude. Compared with the Rayleigh beam model, the first and second forward
natural frequencies predicted by the modified-Rayleigh beam model are much closer to those
calculated by the Timoshenko beam model for both b ¼ 0:15 and 0.35.
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Fig. 2. Comparison of forward frequencies, b ¼ 0:15:
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Fig. 3. Comparison of forward frequencies, b ¼ 0:35:
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In order to quantify the difference in the estimation of the deflection using the respective beam
model, a measure of deviation of the maximum deflection is defined as

DLðor RÞi% ¼
jðui=usÞT � ðui=usÞLðorRÞj

jðui=usÞT j
100%; ð9Þ

where the subscript i ¼ x or y: The differences in the maximum values of ux=us and uy=us between
the Timoshenko and modified-Rayleigh beam models, denoted by DLx and DLy; the Timoshenko
and Rayleigh beam models, DRx and DRy; of a rotating shaft for varying a; b; and l are listed in
Tables 1–4. Based on the presented numerical data, the deflection predicted by the modified-
Rayleigh beam has improved a lot, e.g., within the range, ap1:5; bp0:15 and lp5; the deviation
DLxp0:5% compared with DRxp9:11%: On the other hand, the deviation in the deflections uy is
DLyp21% compared with DRyp28% within the range ap1:5; bp0:15 and lp5: The prediction of
the deflection in y direction has not improved as much as that in x direction. However, one should

Table 2

Comparisons of the maximum values of ux/us between Timoshenko and Rayleigh beam model, DRx %

a l=0 l=2.5 l=5

b=0.03 b=0.15 b=0.35 b=0.03 b=0.15 b=0.35 b=0.03 b=0.15 b=0.35

0.11 0.348 9.49 34.41 0.349 9.39 28.55 0.353 8.29 32.38

0.30 0.375 8.97 33.30 0.374 9.03 35.69 0.374 9.11 19.73

0.45 0.342 7.51 25.66 0.342 7.58 33.60 0.341 7.68 43.24

0.50 0.324 7.03 25.23 0.323 7.10 32.85 0.323 7.19 44.50

0.70 0.103 4.15 30.89 0.103 4.34 31.72 0.104 4.92 43.34

0.90 0.388 9.27 32.88 0.388 8.95 36.17 0.388 8.27 43.64

1.10 0.467 7.98 35.19 0.469 8.20 39.46 0.470 8.78 48.89

1.30 0.327 7.18 38.53 0.327 7.44 43.49 0.327 8.04 53.87

1.50 0.126 8.64 43.49 0.126 8.53 49.75 0.124 8.20 59.06

2.10 0.395 7.72 569.3 0.395 7.65 637.2 0.392 7.82 1836.

Table 1

Comparisons of the maximum values of ux=us between Timoshenko and modified-Rayleigh beam model, DLx %

a l=0 l=2.5 l=5

b=0.03 b=0.15 b=0.35 b=0.03 b=0.15 b=0.35 b=0.03 b=0.15 b=0.35

0.11 0.0010 0.0781 0.553 0.0000 0.1126 2.376 0.0010 0.0703 1.580

0.30 0.0007 0.0945 1.235 0.0000 0.0413 3.697 0.0000 0.2993 3.715

0.45 0.0006 0.1739 0.517 0.0000 0.0225 1.411 0.0006 0.4881 10.707

0.50 0.0006 0.1716 0.750 0.0006 0.2320 1.420 0.0000 0.4977 9.788

0.70 0.0015 0.0256 1.282 0.0015 0.1487 2.648 0.0015 0.4447 11.902

0.90 0.0048 0.3470 2.321 0.0039 0.3022 5.082 0.0039 0.1356 18.835

1.10 0.0034 0.0960 2.900 0.0023 0.0964 10.122 0.0023 0.1481 21.888

1.30 0.0014 0.1028 3.328 0.0000 0.0206 21.026 0.0000 0.2181 30.935

1.50 0.0066 0.1455 104.0 0.0083 0.0314 94.095 0.0066 0.3025 71.605

2.10 0.0206 0.0115 126.8 0.0206 0.3098 147.57 0.0206 1.1690 479.58
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note that the deflection uy is only 9% of ux within the range, ap1:5; bp0:15 and lp5: In other
words, the deflection of the shaft is dominated by ux: Nevertheless, uy will increase mainly due to
the gyroscopic effect for higher rotational speeds l: One can predict that the influences from the
associated coupling effects induced from the shear deformation increase as the rotational speed
and the Rayleigh beam coefficient increase. In fact, ap1:5; bp0:15 and lp5 in which the
modified-Rayleigh beam has a close approximation to the Timoshenko beam, covers most of the
rotating shaft operating conditions in engineering application.

4. Comparisons of the critical speed

A critical speed is said to exist when the frequency of the rotation of a shaft equals one of the
natural frequencies of the shaft. A rapid transition of the rotating shaft through a critical speed is

Table 3

Comparisons of the maximum values of uy/us between Timoshenko and modified-Rayleigh beam model, DLy %

a l=1.5 l=2.5 l=5

b=0.03 b=0.15 b=0.35 b=0.03 b=0.15 b=0.35 b=0.03 b=0.15 b=0.35

0.11 0.764 1.985 198.7 0.518 3.782 211.3 0.249 1.677 16.30

0.30 0.303 5.944 33.17 0.283 6.197 24.85 0.247 7.262 7.052

0.45 0.307 9.432 33.17 0.309 8.535 34.10 0.318 6.608 32.87

0.50 0.385 8.379 36.78 0.385 7.523 36.66 0.379 5.740 35.74

0.70 0.487 5.409 54.40 0.486 5.244 52.90 0.482 4.848 47.78

0.90 0.449 16.87 87.70 0.449 16.09 82.82 0.450 13.07 66.65

1.10 0.539 10.31 143.8 0.539 10.50 134.4 0.543 11.14 97.51

1.30 0.973 16.10 236.1 0.970 16.05 221.1 0.956 16.02 159.1

1.50 0.937 20.56 285.1 0.932 20.52 274.8 0.915 20.42 227.9

2.10 2.131 45.20 14.42 2.122 45.12 11.34 2.085 44.67 5.473

Table 4

Comparisons of the maximum values of uy/us between Timoshenko and Rayleigh beam model, DRy %

a l=1.5 l=2.5 l=5

b=0.03 b=0.15 b=0.35 b=0.03 b=0.15 b=0.35 b=0.03 b=0.15 b=0.35

0.11 2.133 2.685 163.7 2.104 1.971 182.2 1.783 9.274 22.37

0.30 0.678 24.40 204.3 0.687 20.55 11.78 0.728 7.296 26.96

0.45 0.283 0.001 24.42 0.282 0.815 14.58 0.270 1.957 6.851

0.50 0.674 0.984 26.85 0.660 1.021 16.93 0.612 0.573 2.570

0.70 1.613 27.80 1.260 1.601 26.67 6.139 1.532 23.37 8.468

0.90 0.329 7.555 11.26 0.328 7.619 8.854 0.345 7.914 10.02

1.10 2.698 7.366 23.68 2.689 6.629 21.42 2.656 4.716 14.22

1.30 0.972 17.33 47.71 0.972 16.27 44.64 0.978 12.84 36.51

1.50 2.821 0.079 125.3 2.814 0.259 121.2 2.794 1.983 109.0

2.10 2.049 11.65 343.0 2.071 12.86 333.7 2.160 15.76 310.9
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expected to limit the whirl amplitudes. Therefore, a correct prediction of the critical speed is
crucial in determining the vibration characteristics of a shaft. For the purpose of consistency, the
dimensionless parameters introduced here are the same as those in [6]

U ¼
u

c
; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
rAc4

EI

s
O; t ¼ Ot; s ¼

1

d
p
b

� �2

; ð10Þ

where d ¼ 2ð1 þ mÞ=k and m is the Poisson ratio. Let the moving force be absent and the
dimensionless equations of motion for the respective beam models are given as follows:

(a) Timoshenko beam model:
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(b) Modified-Rayleigh beam model:
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(c) Rayleigh beam model:
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After some manipulations, the critical speed cn corresponding to the nth flexural mode of the
respective beam model is:

(a) Timoshenko beam model:

cn ¼ 7
p2ffiffiffiffiffi
2d

p
b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 � ðd� 1Þn2b27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4db4 þ ½1 þ ðd� 1Þn2b2�2

qr
: ð14Þ

(b) Modified-Rayleigh beam model:

cn ¼ 7
n2p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ ðd� 1Þn2b2
q : ð15Þ

(c) Rayleigh beam model:

cn ¼ 7
n2p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � n2b2
q : ð16Þ

Comparing Eqs. (15) and (16), the term, n2 in Rayleigh beam model is simply replaced by
ðd� 1Þn2 in the modified-Rayleigh beam model. For m ¼ 1

3
; d is always greater than 1 for a steel

shaft of a circular cross-section. Therefore, Eq. (16) indicates that there exists an infinite number
of possible critical speeds as the Timoshenko beam model due to the inclusion of the shear
deformation. However, the Rayleigh beam model predicts only a finite number of critical speeds,
which is not true in reality.

The critical speed for a rotating shaft within the Rayleigh beam coefficient b ranging from 0.01
to 2 is plotted in Fig. 4 for the first three forward and three backward frequencies. It is shown that
the critical speeds derived from the modified-Rayleigh beam model and those from the
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Timoshenko beam model decrease as the b increases. The trends of critical speeds corresponding
to different flexural modes are similar and close to each other with respect to the varying b: On the
contrary, the critical speeds predicted from the Rayleigh beam model increases as the b increases.
Moreover, the critical speeds corresponding to the nth flexural mode increase beyond bound when
b ¼ 1=n: Eventually the number of critical speeds predicted by the Rayleigh beam model is limited
and is acceptable only for a small value of b; i.e., bo0:1:

5. Conclusion

A modified-Rayleigh beam is proposed to improve the prediction accuracy of the critical speed,
the natural frequency and the shaft deformation of the Rayleigh beam model subjected to a
moving load. This beam model takes into account the shear deformation effect but it neglects the
associate coupling effects induced by the shear deformation; such as the coupling between
transverse shear and the gyroscopic effects and the coupling between transverse shear and the
rotary inertia. The main advantage is that the natural frequencies of a high-speed spinning, short
and stubby shaft can be determined analytically and the estimations agree well with those
calculated numerically using the Timoshenko beam model. Results have also shown that good
agreement in maximum deflection can be achieved quantitatively between the Timoshenko beam
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C.C. Cheng, J.K. Lin / Journal of Sound and Vibration 261 (2003) 955–965 963



and the modified-Rayleigh beam for a high-speed rotational shaft, i.e., DLp0:5% for ap1:5;
bp0:15; lp5:

Appendix A

The coefficients AT1BAT4 in Eq. (5) are listed as follows:

AT1 ¼ jðo2
Tn1 � 2OoTn1 � b2Þ=½ðoTn1 � oTn2ÞðoTn1 � oTn3ÞðoTn1 � oTn4Þðo2

Tn1 � $2
nÞ�;

AT2 ¼ jðo2
Tn2 � 2OoTn2 � b2Þ=½ðoTn2 � oTn1ÞðoTn2 � oTn3ÞðoTn2 � oTn4Þðo2

Tn2 � $2
nÞ�;

AT3 ¼ jðo2
Tn3 � 2OoTn3 � b2Þ=½ðoTn3 � oTn1ÞðoTn3 � oTn2ÞðoTn3 � oTn4Þðo2

Tn3 � $2
nÞ�;

AT4 ¼ jðo2
Tn4 � 2OoTn4 � b2Þ=½ðoTn4 � oTn1ÞðoTn4 � oTn2ÞðoTn4 � oTn3Þðo2

Tn4 � $2
nÞ�;

AT5 ¼ jð$2
n � 2O$n � b2Þ=½2$nð$n � oTn1Þð$n � oTn2Þð$n � oTn3Þð$n � oTn4Þ�;

AT6 ¼ �jð$2
n þ 2O$n � b2Þ=½2$nð$n þ oTn1Þð$n þ oTn2Þð$n þ oTn3Þð$n þ oTn4Þ�:

The coefficients AL1BAL4 in Eq. (6) are listed as follows:

AL1 ¼ j=½ðoLn1 � oLn2Þðo2
Ln1 � $2

nÞ�;

AL2 ¼ j=½ðoLn2 � oLn1Þðo2
Ln2 � $2

nÞ�;

AL3 ¼ j=½2$nð$n � oLn1Þð$n � oLn2Þ�;

AL4 ¼ �j=½2$nð$n þ oLn1Þð$n þ oLn2Þ�:

The coefficients AR1BAR4 in Eq. (3) are listed as follows:

AR1 ¼ j=½ðoRn1 � oRn2Þðo2
Rn1 � $2

nÞ�;

AR2 ¼ j=½ðoRn2 � oRn1Þðo2
Rn2 � $2

nÞ;

AR3 ¼ j=½2$nð$n � oRn1Þð$n � oRn2Þ�;

AR4 ¼ �j=½2$nð$n þ oRn1Þð$n þ oRn2Þ�:

Appendix B. Nomenclature

A shaft cross-sectional area
cn critical speed corresponding to the nth flexural mode
DR;L measure of deviation of the maximum deflection

E elastic modulus
P moving force amplitude
G complex shear modulus
h height of the beam
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I shaft cross-sectional second moment of inertia
j

ffiffiffiffiffiffiffi
�1

p
k cross-sectional shape factor
c shaft length
uðz; tÞ complex transverse displacement of the shaft
us static deflection at midspan of an unrotating Euler–Bernoulli beam¼ Pc3=48 EI

ux Cartesian component of the deflection along the x direction
uy Cartesian component of the deflection along the y direction
v moving force speed
vcr fundamental critical speed of a pined–pined, unrotating Euler–Bernoulli beam
Z non-dimensional position along the rotating shaft
b Rayleigh beam coefficient
r0 radius of gyration
a non-dimensional moving load speed

%u non-dimensional transverse displacement of the shaft
l non-dimensional rotational speed
m the Poisson ratio
r beam density
O shaft rotating speed
o1EB first natural frequency of an Euler–Bernoulli beam with pined supports at both ends
oLn;1;2 forward and backward frequencies of the modified-Rayleigh shaft
oTn;1;2;3;4 forward and backward frequencies of the modified Timoshenko shaft
on natural frequency corresponding to the nth flexural mode of the shaft
oRn;1;2 forward and backward frequencies of the Rayleigh shaft
$n frequency caused by the moving load
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